
D
R

A
FT

Ajeco ANDI-SERVO Motion Controller Device

Driver

Mark Dennehy

July 7, 2010

Abstract

The ANDI-SERVO is a motion controller board for DC Servo mo-
tors. This document describes a Linux device driver written for this
board, giving a brief introduction to the board itself, the internal struc-
ture of the driver and the user-space interfaces provided.

Part I

ANDI-SERVO Motion Control

Board

The ANDI-SERVO is a 8-bit PC104 board which can control two DC servo
motors. It uses two LM629 motion controllers and two H-Bridges to do so,
one of each per motor. The LM629s take either a velocity or a position re-
quirement and generate the appropriate PWM signal, with encoder inputs
to create a control feedback loop. Acceleration, velocity profiling and so
forth are handled in hardware by the LM629s, thus alleviating the work-
load on the host CPU (Dagda in this case). Thus the driver’s tasks are to
communicate with the LM629 chips and provide them with data concerning
the PID filter used in the control loop, the trajectory you wish the motor
to follow (comprising position, velocity or acceleration), and initialisation of
the board. The driver also attempts to track dagda’s heading by monitoring
the encoder counts for the left and right wheels. Dagda does not use the
on-board H-Bridges as we require more power than they can provide so we
take the PWM signals off-board from connector P2 to external H-Bridges.

1

D
R

A
FT

Part II

Internal Driver Structure

The driver structure is based around four data structures. Two of these are
derived from the data to be sent to the LM629 chips to control the PID
filter and the trajectory followed by the LM629 :

/∗−−−+
| S t r u c t u r e d e f i n i t i o n f o r PID f i l t e r ad ju s tment |
+−−∗/

s t r u c t LM629 F i l t e r
{

i n t dterm ; /∗ De r i v a t i v e samp l i ng i n t e r v a l f a c t o r ∗/
i n t kp ; /∗ P r opo r t i o n a l paramete r ∗/
i n t k i ; /∗ I n t e g r a t i n g paramete r ∗/
i n t kd ; /∗ De r i v a t i n g paramete r ∗/
i n t i l ; /∗ I n t e g r a t i o n l i m i t ∗/

} ;

/∗−−−+
| S t r u c t u r e d e f i n i t i o n c on t a i n i n g a l l t r a j e c t o r y pa rame te r s |
+−−∗/

s t r u c t LM629 Trajec tory
{

BOOLEAN f o r wa r d d i r ; /∗ TRUE|FALSE (v e l o c i t y mode on l y) ∗/
BOOLEAN ve l o c i t y mode ; /∗ TRUE|FALSE (v e l o c i t y | p o s i t i o n mode) ∗/
BOOLEAN stop smooth ; /∗ TRUE|FALSE (smooth | no s top) ∗/
BOOLEAN s t op ab r up t ; /∗ TRUE|FALSE (ab rupt | no s top) ∗/
BOOLEAN mot o r o f f ; /∗ TRUE|FALSE (motor o f f | on) ∗/
BOOLEAN l oad a c c ; /∗ TRUE|FALSE (l oad a c c e l e r a t i o n | don ’ t) ∗/
BOOLEAN l o a d v e l ; /∗ TRUE|FALSE (l oad v e l o c i t y | don ’ t) ∗/
BOOLEAN l oad po s ; /∗ TRUE|FALSE (l oad p o s i t i o n | don ’ t) ∗/
BOOLEAN a c c r e l a t i v e ; /∗ TRUE|FALSE (r e l a t i v e acc | ab s o l u t e) ∗/
BOOLEAN v e l r e l a t i v e ; /∗ TRUE|FALSE (r e l a t i v e v e l | ab s o l u t e) ∗/
BOOLEAN p o s r e l a t i v e ; /∗ TRUE|FALSE (r e l a t i v e pos | ab s o l u t e) ∗/
l ong acc ; /∗ Ac c e l e r a t i o n , range : 0 . .MAXRANGE ∗/
l ong v e l o c i t y ; /∗ Pos i t i o n , range : −MAXRANGE . .MAXRANGE ∗/
l ong p o s i t i o n ; /∗ Pos i t i o n , range : −MAXRANGE . .MAXRANGE ∗/

} ;

These should be self-explanatory. The third and fourth data structures
are used to maintain data about the LM629s and keep a model of sorts of the
chips. This is done as there are no instructions to extract some information
from the LM629, e.g. the current trajectory.

/∗−−−+
| S t r u c t u r e d e f i n i t i o n f o r Motion c o n t r o l l e r c hanne l |
+−−∗/

s t r u c t LM629
{

s t r u c t LM629 F i l t e r ∗ F i l t e r ;
s t r u c t LM629 F i l t e r ∗NewF i l t e r ;
s t r u c t LM629 Trajec tory ∗Tr a j e c t o r y ;
s t r u c t LM629 Trajec tory ∗NewTrajec tory ;
BOOLEAN f i l t e r u p d a t e d ;
BOOLEAN t r a j e c t o r y s t a r t e d ;
BOOLEAN t r a j e c t o r y c omp l e t e ;
BOOLEAN pwm brake ;
i n t p o s i t i o n e r r o r ;

} ;

/∗−−−+
| S t r u c t u r e d e f i n i t i o n f o r ANDI−SERVO board |
+−−∗/

s t r u c t a nd i s e r v o
{

s t r u c t LM629 ∗Channe l0 ;
s t r u c t LM629 ∗Channe l1 ;
BOOLEAN FaultLED ;

2

D
R

A
FT

i n t ba s e add r e s s ;
} ;

All functions in the driver get passed a pointer to an andi servo struct.
From this all necessary information can be accessed easily. The LM629 chips
are controlled by sending one of a set of instructions as listed here :

/∗−−−+
| LM629 command Mnemonics |
+−−∗/

#de f i n e RESET 0x0 /∗ Sof t RESET command ∗/
#de f i n e DFH 0x2 /∗ DeFine Home ∗/
#de f i n e SIP 0x3 /∗ Set I nde x P o s i t i o n ∗/
#de f i n e LPEI 0x1b /∗ I n t e r r u p t on e x c e s s i v e p o s i t i o n e r r o r ∗/
#de f i n e LPES 0x1a /∗ Stop on e x c e s s i v e e r r o r ∗/
#de f i n e SBPA 0x20 /∗ Set BreakPoint , Abso l u t e ∗/
#de f i n e SBPR 0x21 /∗ Set BreakPoint , R e l a t i v e ∗/
#de f i n e MSKI 0x1c /∗ MaSK I n t e r r u p t s ∗/
#de f i n e RSTI 0x1d /∗ ReSeT I n t e r r u p t s ∗/
#de f i n e LFIL 0 x1e /∗ Load PID F I L t e r pa rame te r s ∗/
#de f i n e UDF 0x4 /∗ UpDate PID F i l t e r ∗/
#de f i n e LTRJ 0 x1 f /∗ Load TRaJectory pa rame te r s ∗/
#de f i n e STT 0x1 /∗ StarT T r a j e c t o r y ∗/
#de f i n e RDSIGS 0xc /∗ ReaD SIGnalS r e g i s t e r ∗/
#de f i n e RDIP 0x9 /∗ ReaD Inde x Po s i t i o n ∗/
#de f i n e RDDP 0x8 /∗ ReaD De s i r e d Po s i t i o n ∗/
#de f i n e RDRP 0xa /∗ ReaD Real P o s i t i o n ∗/
#de f i n e RDDV 0x7 /∗ ReaD De s i r e d V e l o c i t y ∗/
#de f i n e RDRV 0xb /∗ ReaD Real V e l o c i t y ∗/
#de f i n e RDSUM 0xd /∗ ReaD i n t e g r a t i o n SUM ∗/

This is done by a set of functions listed in andi servo.h, and called from
servo.h. The user never sees these functions and shouldn’t attempt to call
them as that could corrupt the internal model of what has happened on the
LM629.

Part III

User-Space Driver Interfaces

There are three levels of interface to the driver from user-space. These
are low-level access to the PID filters and trajectories; mid-level access to
commands pertaining to a single motor axis; and high-level heading and
position setting. They are accessed in the normal unix manner, through
device files :

/dev/andi servo/filter[0,1] Low-level access to PID filters.

/dev/andi servo/trajectory[0,1] Low-level access to trajectories.

/dev/andi servo/channel[0,1] Mid-level access to motor axes.

/dev/andi servo/board High-level access to board.

The various read()/write()/ioctl() functions differ in effect from file to
file as listed here :

/dev/andi servo/filter[0,1]
read() write() ioctl()
Current PID filter Load new PID filter Update filter

Is filter updated ?

3

D
R

A
FT

/dev/andi servo/trajectory[0,1]
read() write() ioctl()
Current Trajectory Load new Trajectory Start new Trajectory

Trajectory Started ?
Trajectory Completed ?
Register for notification on completion of trajectory

/dev/andi servo/channel[0,1]
read() write() ioctl()
Get desired position Set desired position Position/Velocity mode
Get actual position Get desired velocity Desired/Actual feedback
Get desired velocity Smooth stop
Get actual velocity Abrupt stop

Motor off
Get/Set PWM brake
Get/Set breakpoint
Get/Set acceleration
Get/Set signals
Get/Set status
Get/Set position error threshold
Get/Set IRQ mask
Define home position

/dev/andi servo/board
read() write() ioctl()
Get Status, Signals, Position, Heading Set desired position, heading Hard Reset

Soft Reset
Set/Get PWM Brakes
Smooth stop
Abrupt stop
Motor off
Set Fault LED
Enable IRQs
Get Interrupt source

The formats written or read from the files also differs :

/dev/andi servo/filter[0,1]
Read/Write a LM629 Filter struct in binary.

/dev/andi servo/trajectory[0,1]
Read/write a LM629 Trajectory struct in binary.

/dev/andi servo/channel[0,1]
Read/write in ascii.

/dev/andi servo/board Read/write in ascii.

The language chosen to write control applications is not relavent as long
as it understands the binary format used to write the filter and trajectory
data. In C and C++ and Objective C, this is done natively. In Perl and
Python it is easy to arrange, and also in Java through the use of bitvectors.

The structures used in the driver, as well as the ioctl() commands used
are contained in a public header file andi.h. This should be used by all C,
C++ and Objective C programs. A similar file has yet to be written for
other languages.

4

